مدل سازی بار رسوب کل رودخانه ها با استفاده از شبکه های عصبی مصنوعی
Authors
abstract
برآورد بار رسوب کل رودخانهها از مسائل مهم و کاربردی در مدیریت و برنامهریزی منابع آب است. غلظت رسوب میتواند به روشهای مستقیم و یا غیرمستقیم محاسبه شود که معمولاً روشهای مستقیم پرهزینه و زمانبر هستند. همچنین بار رسوب کل میتواند به کمک روابط مختلف انتقال رسوب محاسبه شود، لیکن به طور معمول کاربرد این روابط نیاز به شرایط معینی داشته و به علاوه در بیشتر موارد نتایج حاصل از آنها با یکدیگر و با مقادیر اندازهگیری شده متفاوت است. هدف از این پژوهش ارائه روشی بر پایه شبکههای عصبی مصنوعی (ann) در تخمین بار رسوب کل بود. بدین منظور از دو نوع شبکه عصبی پرسپترون چند لایه (mlp) و توابع پایه شعاعی (rbf) و 200 نمونه، استفاده شد. 75 درصد از دادهها برای آموزش و 25 درصد برای آزمون شبکهها در نظر گرفته شدند. متغیرهای ورودی مدلها شامل سرعت متوسط جریان، شیب کف آبراهه، عمق متوسط، عرض آبراهه و قطر میانه ذرات رسوب و خروجی مدل، غلظت رسوب بود. متغیرهای ورودی مرحله به مرحله به شبکهها اضافه شدند و هر بار نتایج ارزیابی شد تا مناسبترین مدل تعیین شود. سپس نتایج حاصل از مدلهای ann با پنج معادله معروف انتقال رسوب مقایسه شدند. شاخص های آماری نشان داد که دقت شبکههای عصبی بهویژه مدل mlp در تخمین بار رسوب کل با ضریب همبستگی 96/0 بیش از سایر مدلهاست. همچنین مشخص شد که برای افزایش دقت مدل نیاز به آموزش آن با هر دو نوع دادههای هیدرولوژیک و رسوب است. رابطه ackersو white در برآورد مقدار بار رسوب کل بسیار بیشبرآورد و سایر روابط، کم برآورد بودند. نتایج این پژوهش نشان داد که مدلهای ارائه شده بر پایه شبکههای عصبی با مقادیر رسوب کل مشاهده شده همخوانی بیشتری دارند و بویژه شبکه mlp میتواند مقدار رسوب را در نقاط پیک به خوبی برآورد نماید.
similar resources
بررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دستهبندیشده
بار رسوب جریان، شاخص مفیدی در پیشبینی فرسایش خاک در حوزههای آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب میتواند در مدیریت و اجرای پروژههای آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دستهبندی دادهها بهعنوان راهکاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانههای خلیفهترخان و چهلگزی در حوضۀ قشلاق...
full textمدلسازی بار رسوب کل رودخانهها با استفاده از شبکههای عصبی مصنوعی
برآورد بار رسوب کل رودخانهها از مسائل مهم و کاربردی در مدیریت و برنامهریزی منابع آب است. غلظت رسوب میتواند به روشهای مستقیم و یا غیرمستقیم محاسبه شود که معمولاً روشهای مستقیم پرهزینه و زمانبر هستند. همچنین بار رسوب کل میتواند به کمک روابط مختلف انتقال رسوب محاسبه شود، لیکن به طور معمول کاربرد این روابط نیاز به شرایط معینی داشته و به علاوه در بیشتر موارد نتایج حاصل از آنها با یکدیگر و با ...
full textمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
full textمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
full textمدل سازی انرژی ضربه ی فولادهای مرتبه ای با استفاده از شبکه های عصبی مصنوعی
در این مقاله, انرژی ضربهëی فولادهای مرتبهëای در دماهای مختلف با استفاده از شبکهëهای عصبی مصنوعی مدلëسازی شده است. فولادهای مرتبهëای با استفاده از چیدمانëها و ضخامتëهای مختلف فولادهای ساده کربنی و زنگëنزن، به عنوان الکترود اولیه فرآیند ذوب دوباره سربارهëای الکتریکی، تولید میëشوند. نفوذ اتمëهای مختلف از درون قطعات اولیه فولادی به یکدیگر سبب تولید نواحی مرتبهëای فریتی و آستنیتی میëگردد. شش نوع مدل...
full textMy Resources
Save resource for easier access later
Journal title:
نشریه حفاظت منابع آب و خاک (علمی - پژوهشی)Publisher: دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران
ISSN
volume 2
issue 3 2013
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023